Multiscale Monte Carlo Thermalization

Michael G. Endres (MIT)

RBRC Workshop at BNL • Upton, NY March 10, 2016

M. G. E., R. C. Brower, W. Detmold, K. Orginos and A.V. Pochinksy Phys.Rev. D **92** (2015) 114516 [arXiv:1510.04675]

Motivation

- Critical slowing down
 - poor sampling of topology when a < 0.05 fm
 - physical pion masses are costly
- Efficient means of generating large physical volume lattices

Markov Chain Monte Carlo

$$\langle \mathcal{O} \rangle \approx \frac{1}{N} \sum_{i=1}^{N} \mathcal{O}(s_i) + O\left(N^{-1/2}\right)$$
 $s_i \text{ drawn from } \mathcal{P}(s) = \frac{e^{-\mathcal{A}(s)}}{Z}$

Generation of s_i determined by a transition probability $\mathcal{M}(s',s)$ for $s \to s'$

Markov Chain Monte Carlo

$$\langle \mathcal{O} \rangle \approx \frac{1}{N} \sum_{i=1}^{N} \mathcal{O}(s_i) + O\left(N^{-1/2}\right)$$
 $s_i \text{ drawn from } \mathcal{P}(s) = \frac{e^{-\mathcal{A}(s)}}{Z}$

Generation of s_i determined by a transition probability $\mathcal{M}(s',s)$ for $s \to s'$

Defines the "algorithm"

Correct sampling of path integral measure requires:

$$\sum_{s \in \Sigma} \mathcal{M}(s',s)\mathcal{P}(s) = \mathcal{P}(s')$$

$$\sum_{s' \in \Sigma} \mathcal{M}(s',s) = 1$$
 stationary distribution probability conservation

Markov Chain Monte Carlo — evolution

Spectral decomposition of a Markov process:

$$\mathcal{M} = \sum_{n \geq 0} e^{-1/\tau_n} |\chi_n\rangle \langle \chi_n| \qquad \qquad \mathcal{M}^\tau = \sum_{n \geq 0} e^{-\tau/\tau_n} |\chi_n\rangle \langle \chi_n|$$
 under appropriate assumptions, bounded by unity

Evolution of probability distribution and expectation values:

Markov Chain Monte Carlo — equilibration

Markov Chain Monte Carlo — critical slowing down

Fine lattices decorrelate slower than coarse lattices

lattice spacing

Markov Chain Monte Carlo — topological freezing

On a periodic lattice, topological charge fluctuations become exponentially suppressed in $I/a \rightarrow Incorrect sampling$

Multiscale Monte Carlo

- Ultimate goal: an algorithm which allows for efficient updating of modes on multiple scales while retaining detailed balance
 - some progress for simple systems, remains challenging for gauge theories (QCD in particular)
- More modest goal of this work: realization of a multiscale thermalization algorithm; the strategy draws upon many ideas:
 - standard Monte Carlo techniques
 - multigrid concepts of restriction (coarse-graining) and prolongation (refinement)
 - real space renormalization

A multi-scale updating algorithm: Ising spin chain

level ID ising model

O "integrate out"

$$Z^{[\ell]} = \sum_{\{S\}} e^{-H^{[\ell]}}$$

$$H^{[0]} = J \sum_{i} S_{2i}(S_{2i+1} + S_{2i-1})$$

$$H^{[1]} = R(J) \sum_{i} S_{2i+1} S_{2i-1}$$

$$R(J) = \frac{1}{2} \cosh^{-1} (e^{2J})$$

A multi-scale updating algorithm: Ising spin chain

"Integrating in" spins at the fine level (0) requires a single "heat bath" update per (undefined) site:

$$\mathcal{P}(S_{2i}) = \frac{e^{-JS_{2i}(S_{2i+1} + S_{2i-1})}}{\cosh(J(S_{2i+1} + S_{2i-1}))}$$

A multi-scale updating algorithm: Ising spin chain

Generalization to more complicated systems

- Generalization is achieved with approximations:
 - truncation of the coarse action; implies inexact RG matching
 - one-to-one refinement prescription based on interpolation, rather than exact prescription
- Rethermalization is crucial in order to correct for the errors induced by such approximations
- Effectiveness/use of approach depends on several factors
 - time scales associated with the conventional algorithm
 - refinement prescription
 - RG matching

$$\mathcal{P}_{\tau}(s) = \mathcal{P}(s) + \sum_{n>0} \langle s | \chi_n \rangle \langle \chi_n | \mathcal{P}_0 \rangle e^{-\tau/\tau_n}$$

$$\tau_{\rm decorr} \lesssim 2\tau_1$$

$$\langle \mathcal{O} \rangle_{\tau} = \langle \mathcal{O} \rangle + \sum_{n>0} \langle \mathcal{O} | \chi_n \rangle \langle \chi_n | \mathcal{P}_0 \rangle e^{-\tau/\tau_n}$$

Goal: to find an initial probability distribution for which this overlap vanishes for small n

Faster thermalization achieved if:

$$\tau_{\mathrm{therm}}^c + \tau_{\mathrm{retherm}}^f < \tau_{\mathrm{therm}}^f$$

Faster ensemble generation achieved if:

$$\tau_{\mathrm{decorr}}^c + \tau_{\mathrm{retherm}}^f \le \tau_{\mathrm{decorr}}^f$$

- more efficient use of computational resources
- greater statistical power due to fully decorrelated streams
- reduced critical slowing down; e.g., well sampled topology

Interpolation of gauge fields (à la 't Hooft)

[1] Coarse lattice variables are transferred to the fine lattice

set to unity by a gauge choice

undefined bond variables (set to unity)

Interpolation of gauge fields (à la 't Hooft)

[2] Interior links are obtained by first minimization of action defined on 2x2 plaquettes

set to unity by a gauge choice

undefined bond variables (set to unity)

Interpolation of gauge fields (à la 't Hooft)

[3] Minimization is repeated sequentially for interior cells

Properties of the interpolation

- Implementation is simple and efficient
- Can be performed locally
- Preserves long distance properties of coarse configuration
 - subset of even dimensional Wilson loops exactly
 - topological charge at sufficiently fine lattice spacing
 - discrete rotational invariance
- Breaks a subset of discrete translational symmetry
 - rapidly restored upon rethermalization

Numerical studies

Lattice	β	a [fm]	N
$12^3 \times 24$	5.626	0.1995(20) fm	385
$16^3 \times 36$	5.78	0.1423(5) fm	385
$24^3 \times 48$	5.96	0.0999(4) fm	185
$32^3 \times 72$	6.17	0.0710(3) fm	185

- Pure SU(3) gauge theory
- Two pairs of RG matched ensembles (plaquette action)
- All ensembles correspond to a fixed physical volumes ~ 2.3 fm
- Studied long-distance observables such as large Wilson loops and various quantities under "Wilson flow" (diffusion)
 - e.g., powers of the topological charge, action density

Interpolation — topological charge density

Interpolation — topological charge

At sufficiently fine lattice spacing, topological charge of the coarse action is preserved configuration by configuration

Thermalization and rethermalization — HMC

- Ensembles of size N_s=24
- Thermalization times probed by long distance observables measured at various Wilson flow times: $\chi(t)$, E(t)
- Thermalization considered for four ensembles:
 - disordered (hot)
 - ordered (cold)
 - restriction followed by prolongation of fine lattices (r-l)
 - prolongation of an RG matched coarse ensemble, generated using a Wilson action (r-II)

(Re)thermalization — Wilson loops

- Long-distance observables rethermalize on time scales shorter than
 - thermalization time for hot/cold starts (standard approach)
 - decorrelation time for fine evolution

(Re)thermalization — E(t)

Least-squares fitting:

$$f^{\alpha}(\tau) = z_0 + z_1^{\alpha} e^{-\tau/\tau_1} + z_2^{\alpha} e^{-\tau/\tau_2}$$
$$z_0 = \langle \mathcal{O} \rangle \qquad z_n = \langle \mathcal{O} | \chi_n \rangle \langle \chi_n | \mathcal{P}_0 \rangle$$

E(t) fit results as a function of flow time t/t0

Rapid thermalization

- Efficient multi-stream generation of uncorrelated gauge configurations
- Significantly reduces the problem of critical slowing down
 - enables numerical simulations at ultra-fine lattice spacings (a<0.05fm) with well-sampled topological charge
 - more efficient simulations expected for physical pion masses
- Alternatively, enables efficient numerical simulations at large volumes
- Approach successfully applied to Hybrid Monte Carlo simulations
 - next steps: inclusion of fermions